
Sketching

Jan Marten
jan.marten@rwth-aachen.de

Julian Meichsner
julian.meichsner@rwth-aachen.de

ABSTRACT
Sketching is a special kind of drawing used to quickly ex-
press ideas like the design of objects. While there are al-
ready systems available for drawing, these do not support
the special affordances and requirements of sketching. In
this paper we present some approaches for supporting the
user in creating sketches. We focus on three different kinds
of sketching: 2D sketching like we are used to with pen-
cil and paper, sketching of 3D models and graph sketching.
We evaluate each of the approaches and provide an outlook
what problems still have to be solved to replace traditional
sketching with digital sketching.

INTRODUCTION
Sketching is a technique which allows to quickly express
ideas that someone has in mind. Classic sketching was al-
most always done with pencil and paper. The advantage of
pencil and paper is that a sketch does not look finished which
also usually is not the case because only a quick idea was
visualized. Furthermore, sketching focuses on the main fea-
tures of an idea or concept. Nowadays, in contrast to early
sketching, computers are able to help humans with sketch-
ing. Thus, digital sketching is an alternative to pencil and
paper sketching. To sketch with a computer there are differ-
ent input devices available like graphics tablets and digital
pens which allow users to draw as if they drew on paper.

With digital sketching users can be aided by the computer
by for example making an intended circle a real circle or
making an intended square a real square [3][11]. Further-
more, multi-strokes can be approximated to one curve. A
sketching software can also display assisting lines or a grid
on which all sketched lines are fitted to [2][3]. All in all a
computer allows even non-experienced users to draw better
sketches who would not be able to draw as well on paper [5].

Sketching programs have a long history, one of the first ap-
proaches for a sketching system and one of the first computer
programs ever with a graphical user interface was Sketchpad
by Sutherland et al. [13].

There are different sketching techniques. The best known
technique is 2D sketching as this technique matches the pen-
cil and paper like sketching. Therefore, these approaches
really need to compete with traditional sketching. Another
sketching technique is 3D sketching. With the help of a com-
puter a user is able to create sketches in 3D. In 3D sketches
a user is able to rotate and move the view, thus, the sketch

Figure 1. An example 2D sketch.[10]

can be seen from different sides. With classic pencil and pa-
per one can only sketch a 3D object from one perspective.
A last sketching technique we will discuss is graph sketch-
ing. Graph sketching is a technique where a graph is cre-
ated, but without real raw data. These techniques are used
for example to illustrate future development of a company’s
incomings.

This paper is structured as follows. In the first section ap-
proaches for 2D sketching will be explained. Following,
in the next section approaches for 3D sketching will be ex-
plained. The next section will discuss approaches for sketch-
ing graphs. Finally, we will conclude the paper with a sum-
mary and a short outlook. At the end of every section we
conclude each of the approaches.

2D SKETCHING
2D sketching is used by nearly everyone to quickly visual-
ize an idea to others or to keep an idea in mind. But more
general 2D sketching is mainly used by artists and designers.
Figure 1 shows an example 2D sketch of a car. On the one
hand designers and artists use sketches to express and re-
member ideas, but on the other hand sketches are often first
versions of a final product. A sketch should usually not look
finished, since only the concept should be expressed. Fig-
ure 1 is an example why a sketch should not look finished.
The shape and concept of the car is clearly visible but it is
not focused on the details like the mirror of the car. Thus,
clients cannot argue about the details.

The ability to use digital 2D sketching to sketch ideas brings
some advantages as well as some disadvantages. Digital
sketches have the advantage that they are saved on storage
whereas classic sketches have to be digitalized for instance
with a scanner in order to preserve the sketch. Moreover,
the quality of the sketch does not decrease. Pencil and paper

1



Figure 2. Interactions with the canvas. Translation (A), rotation (B)
and scaling (C)

sketches may be crumbled or the ink may vanish. In addi-
tion to advantages which are not sketching specific there are
also advantages which especially belong to digital sketch-
ing. One advantage is the aid the computer provides to the
user. Lines can be approximated to straight lines, multi-
stroke curves can be approximated to one curve. These ad-
vantages allow even non-experts to sketch things which they
would not be able to sketch with pencil and paper.

But this also introduces a problem, because with such beauti-
fication a sketch might not look like a sketch anymore. Thus,
by presenting such sketches, people might think that the idea
is already finished.

Exploring Frame Gestures For Fluid Freehand Sketching
One major difference for artists and designers who are used
to traditional sketching is the interaction. The sketchbook is
the main interaction point. The sketchbook can be hold and
rotated in any way according to the preferences of the artist
or in order to support the natural hand movement.

Nijboer et al. [9] used the interactions which are done with
a traditional sketchbook and tried to explore which interac-
tions can be mapped to a sketching software. They explored
an approach with a minimalistic user-interface which uses
gestures. They focused predominantly on interactions with
the drawing canvas and on stroke manipulation.

Early approaches to sketching software did not have a ro-
tatable drawing canvas in mind, thus, artists were forced to
draw in only one view. This forced view is unnatural and
may even reduce the quality of a sketch because the user
cannot use the natural hand movement for instance to draw
a curve.

The system allow a user to rotate, translate and scale the
drawing canvas. Since, Nijboer et al. tried to build a min-
imalistic user-interface, they use the frame of the interface
as the most important interaction point. Figure 2 shows the
three possible interactions with the canvas. Gesture A is
used to translate the canvas. The stroke starts at the frame
of the interface and is directed to the mid of the interface.
Nijboer et al. explained the gesture as a mapping from inter-
action with paper, where a finger is placed at the border and
is moved in the perpendicular direction to move the paper.
Gesture B is used to rotate the canvas. The pen starts again

at the border of the interface and is moved parallel to the bor-
der. Here they also tried to use a natural mapping of rotating
a paper. Although the paper has to be hold in the center. The
last gesture C is used to scale the canvas. Here two starting
points are possible. Starting from the corner and moving the
pen to the center of the interface can either be used to scale
the canvas down (C-) or to scale the canvas up (C+). Scaling
of a canvas is a real improvement over traditional sketching.

The same gestures can be applied if the user selected one
or more strokes, since then a frame around the strokes is
displayed which allows the exact same gestures. Drawing
is done by using and pressing the pen and erasing with the
eraser tip of the pen. To erase a whole stroke or a group of
strokes further gestures are used. First of all a hold gesture
with the eraser tip is required. After releasing a red circle is
displayed. A scratch-out gesture starting from there with the
eraser tip will delete all strokes which are touched.

The authors evaluated their system with ten people which
are categorized into two classes. One group of expert users
who were already familiar with other sketching and drawing
programs and a group of five novice users who had little to
no knowledge of digital sketching programs. The study was
divided into two phases. In the first phase the users should
experiment with the software and they were not given any
explanation of the available gestures and the interface. After
this phase the users got an introduction to the interface.

The novice users could easily draw with the basic function-
ality without introducing the features. Both groups could
easily use the interface after the introduction. The experts
could incorporate the possible interactions faster then the
novice users. Overall they received positive feedback for
the system.

With the help of the evaluation the authors were also able to
see some flaws. One of them is a missing undo function. But
they also received negative feedback for the zooming func-
tion since, as mentioned above, users are only able to zoom
into the canvas by starting at the corner and moving the pen
into the center of the interface. This is not a natural mapping,
especially not since zooming out is using the same direction
but only a different starting point. The same applies to the
translation gesture. Starting the gesture at the left border it
is not possible to translate the canvas to the left since there
is no screen space left.

One major disadvantage of gesture based systems is that the
user is not aware of all possible interactions, hence, users
always need an introduction to use all features. The same
applies here because the evaluation showed that novice users
could draw but only with the basic functionalities.

iCanDraw?
As mentioned previously, digital sketching systems can as-
sist the user in drawing and thus allow even users with little
to no experience to sketch and draw. Dixon et al. [5] de-
veloped the system iCanDraw? which helps the majority of
people who claim to be unable to draw well. They chose the

2



Figure 3. iCanDraw? interface: A: reference image, B: Text feedback,
C: Task, D: Options, E: Straightedge tool, F: Canvas, G: Visual feed-
back [5]

task of drawing a human portrait faces which are provided
as reference images through the whole drawing process.

One motivation for the creation of such an assisting system
was that novice drawers usually draw what they know and
not what they see. Novice users for example often draw eyes
as two ellipses with two filled circles as the pupils. Thus,
such a system helps the user to see where an error is made
and to better perceive what should be drawn. The authors
utilize a step-by-step construction of the final image to teach
drawing a human face. In each step the current task is shown
and after the user is finished with a step the system is asked
to check the work. The system provides corrective feedback
in a visual and textual way to the user. The user can then
decide to improve the sketch or advance to the next step.

Figure 3 shows the interface of iCanDraw?. It is divided
into the following parts: A shows the reference image the
user should draw. Here, depending on the current task, dif-
ferent regions can be emphasized by dimming out other re-
gions for example highlighting the nose. B provides textual
feedback. C displays the current task in the different steps.
E is a straightedge tool. F is the drawing canvas where the
user draws the face. The red dotted lines at G provide the
visual feedback.

In every step the system provides corrective feedback and
the user may correct his work according to the feedback. In
order to assist the user and provide corrective feedback the
system needs to get some knowledge of the reference image
and the sketched image. First of all the reference image is
processed. The authors use a face recognition library to ex-
tract the most important facial features. For the reference
image an example template is created which is used to com-
pare the drawn sketch with the reference image. In each step
the drawn strokes are recognized then classified and put into
different pools depending on the similarity to other strokes
(for instance all nose strokes). Then for each facial feature

Figure 4. The caret snapping on an alignment line while dragging a
triangle in Snap-Dragging [4].

the proportions and alignment of the strokes from one pool
are compared to those of the example template.

The authors used two design iterations to create the interface
and found several things in the first iterations which could
be improved. Furthermore, they evaluated their system with
five participants who claimed not to be able to draw well.
The result was that every participant became better even with
freehand drawing after gaining corrective feedback on the
first examples which was also confirmed with a quantitative
analysis of the drawn faces.

Such systems can really aid novice users in learning to draw.
Nevertheless, drawing face images is just a small step to-
wards the goal of learning to draw just with a computer, be-
cause it easy to extract important features from face images
with known algorithms but very hard for other objects.

Snap-Dragging
An early approach on supporting the user to draw 2D objects
consisting of straight lines is Snap-Dragging [4], which was
introduced in 1986. The idea was, to use a ruler and com-
pass (two tools usually used by draftsmen) metaphor in a
computer program for making precise line drawings possi-
ble. The methods of Snap-Dragging were implemented in
an illustrator system called Gargoyle which will not be fur-
ther discussed here.

The user mainly interacts with the system with a so-called
caret, a kind of marker which can be moved by the cursor
and snaps to special points like control points, line endings
or line crossings. When adding a new line to the drawing, the
user specifies the start and end point of it by this caret. If he
wants to connect the line with an existing line, the caret will
automatically snap to the end point of that line by using a
gravity function, and therefore supports the user in this task.
While moving objects, the system displays alignment lines
to which the caret will also snap, as shown in Figure 4. These
alignment lines are placed related to other existing lines or
points in the drawing. The drawing of a line between two
clicks with the caret, as well as the option of enabling align-
ment lines, is what is meant with the ruler metaphor, because
these are tasks a draftsman would usually draw with a ruler
on his sketch board. Other functionalities of the system in-
clude moving, rotating and scaling drawn forms.

Drawing With Constraints
Gleicher et al. [7] created a system called Briar which al-
lows the user to draw objects and then establish relations be-
tween them, the constraints. In contrast to other constraint
based drawing systems where the user specifies relations be-

3



Figure 5. Constraints including their visual representations: a) point-
on-object and point-on-point constraint b) distance between points c)
points-aligned d) orientation. [7]

tween objects and afterwards the system has to solve the
constraints which satisfy the relations, in Briar the user only
creates constraints for relations which have been established
before. Thus, there is always an initial solution available
and therefore the system does not need to find a solution for
constraints which come from arbitrary states.

The system employs a technique called Augmented Snap-
Dragging which bases on the approach by Bier et al. Using
augmented Snap-Dragging the user can create constraints
with direct-manipulation which is also the only method in
Briar to create constraints. Different types of constraints can
be created with augmented Snap-Dragging including: posi-
tions, orientations and distances. Figure 5 shows some con-
straints for example distance b) and orientation d). A rela-
tion between objects can be created by dragging an object to
another point or object. Then the system snaps the first ob-
ject to the second object and creates a relationship. The user
then can either choose to accept the new relationship, ignore
it or if automatic constraint creation mode is turned on the
constraint is automatically created and the user is able to re-
ject the newly created constraint. In addition to dragging
and snapping objects onto each other the user is also able to
use the so called alignment objects to create constraints, for
example an alignment circle, which were explained above.
There might be ambiguity when a new relation should be
established. Therefore, the user can cycle through possible
objects which can be snapped to. To delete or edit a con-
straint Briar offers two methods. While dragging an object
the user can press a key to “grab” that object “hard” which
removes all constraint belonging to the point. The second
method is to disable constraint maintenance. In this mode
all constraints are disabled and the user may move objects
around. After re-enabling constraint maintenance all vio-
lated constraints are then removed.

Briar provides the user with different feedback. If the cur-
sor is snapped to an object or an edge the shape of the cursor
changes and the color of the object changes as well. Con-
straints, which represent an additional state in the drawing,
need to be visible to the user as well. Therefore, Briar uses
an empty square for point-on-object constraints and a filled
diamond for point-on-point constraints. Figure 5 a) shows
the two basic constraints. Other constraints are visualized
with the help of the two basic visualizations and additional
alignment objects like in b) or d).

The authors also found some limitations of the system. First
of all not all Snap-Dragging presented in [4] were imple-
mented in Briar since it was only a research prototype. Fur-
ther problems arise when the drawings become larger. One

Figure 6. Pegasus: Showing multiple candidate strokes

problem when the paper was written was scalability but as
the authors already stated this is solved now because the pro-
cessing power increased significantly. But a further problem
with large drawings is clutter. With a large number of ob-
jects snapping may be problematic because there are many
object which can be snapped to and the user might also cycle
through a lot of objects to create the correct constraint.

Interactive Beautification
A different approach to assist users in sketching was done by
Igarashi et al. [8]. They focused on beautifying free strokes
by also utilizing geometric constraints. This technique can
be applied in 2D sketching but even more in sketching dia-
grams. The idea is that the user can draw free strokes without
changing a mode, and the system infers what was intended
to draw and then beautifying the stroke whilst taking into
account different geometric constraints. Such a technique
allows even users who are not able to draw well to create
good looking sketches or diagrams but furthermore, this lets
the user create these sketches or diagrams very fast and effi-
cient.

To beautify the free strokes of a user the system infers ge-
ometric constraints from it, which depend on the strokes
drawn before, and then solves these constraints displays the
result or multiple candidates. Multiple candidates are shown
because a stroke can often be ambiguous. There are several
supported geometric relations by the systems like connecting
strokes, parallelism, perpendicularity, alignment of strokes,
congruency, symmetry and interval equality of strokes.

As already mentioned above, a drawn stroke may be am-
biguous to the system. Thus, the system generates all pos-
sible candidates. The user can then choose the already se-
lected primary candidate, another candidate by tapping on
the candidate or redraw the stroke if the intended stroke is
not displayed at all. Figure 6 shows the primary candidate
stroke in red and two other possible candidates in magenta.
To erase strokes are trimming parts of strokes the user can
use the scratch-out gesture which is also used in the previ-
ous approaches.

The authors evaluated the system with 18 students where
they focused on the metrics rapidness and precision. The
students were asked to draw three different diagrams where
they should be fast but also try to satisfy all geometric con-
straints with three different systems. They evaluated their
Pegasus prototype software against a CAD software and an
object orientation based drawing software. The result was
that the users were faster with the Pegasus system and fur-
thermore, they were more precise compared to the other draw-
ing softwares.

This software also showed some limitations since it is lim-

4



ited to lines. Furthermore, it is difficult to select the desired
candidate as there may be many candidates which may also
overlap each other.

Sketch Based Interfaces
Sezgin et al. [11] created an approach which is along the
same lines as the approach [8]. As before the authors only
want the user to draw and not to deal with a large user in-
terface with different drawing tools and menus, especially
not for creating different geometric objects like curves and
lines, since this would interfere with the interactions done
with pencil and paper, and thus, again increasing the com-
plexity.

The main focus in the approach of [11] is the approxima-
tion of strokes. The authors want to approximate the strokes
with a more abstract representation. Therefore, the first step
of approximating the strokes is to detect vertices which de-
fine the starting and end point of a segment. The authors
use an interesting approach to detect the vertices which is
speed and curvature data. The idea is that these are some
main metrics which define a segment and furthermore, espe-
cially the beginning of a new segment. If, for example, the
user draws a square, then the direction of the pen changes
at the corners to start a new segment, thus, the curvature
is high. But furthermore, usually also the drawing speed
decreases. The authors use a combination of both metrics,
minima in speed and maxima in curvature, to detect vertices
because with only one of both metrics a new segment can-
not be detected, since a user might for example slow down
even on a straight line without intending to change direction.
To approximate lines the authors use the least squares error
to evaluate the quality of a fit and for approximating curves
they use Bèzier curves with two end points and two control
points.

The system also beautify the strokes after the detection and
approximation phase like in Interactive Beautification, but
the strokes are not as much beautified as in that approach.

The authors evaluated the system with thirteen participants
which mainly were from the computer science field. They
focused on the aspect how natural and efficient the system
is. Therefore, they compared their system with Xfig which
is a tool to create diagrams on Unix systems. Overall they
received positive feedback and the result that their system is
more natural. Moreover, all but one participant favor their
system over Xfig. Additionally they evaluated how correct
the approximations of the lines and curves were and state
that 96% of the lines and curves were approximated cor-
rectly.

Live Paint
Live Paint [1] is a system for coloring dynamic planar map
illustrations and was presented by Adobe Systems in 2007.
Illustration systems based on planar maps do not have dif-
ferent layers of paths, but all paths lie unordered in a single
plane. A well-known example for such a system is Adobe
Flash. When filling coloring in this kind of illustration, a fill
area is just bounded by the paths surrounding it. Therefore it

Figure 7. A sketch with gaps on the left, and the coloring done with
Live Paint on the right [1].

is difficult to keep the coloring when changing paths of the
image. Live Paint allows to edit the paths after coloring, and
keeping the most reasonable coloring when paths move or
are deleted.

When a path in the image is moved, Live Paint calculates
the best solution to color the new image. Therefore it at first
checks which regions changed, and which were untouched.
When a path is just moved, without adding or deleting any
regions, the color of those regions can just stay the same as
it was. If a new path is created, or an old one is extended,
so that it subdivides some regions, all new subregions will
be colored in the same way as the whole region was before.
Another simple operation is the deletion (or shortening) of a
path: the new region gets the fill color of the largest of the
subregions, that are now merged together. For more com-
plex changes in the image, algorithms calculate the new col-
oring based on the so-called context of the regions. This
context contains information about each path bordering the
changed region, including the position of the path relative to
the region, if a path is closed, whether the region is inside or
outside the path, and so on.

The detection of gaps makes the system useful for freehand
sketching. Gaps often occur in the outlines of a region when
drawing them by hand. Live Paint detects those gaps, and
regards the regions as closed when calculating the region
coloring. An example of the coloring of a sketch includ-
ing gaps is shown in Figure 7. The gap detection algorithm
is called every time the image changes, because gaps can
move around while editing the image, or new ones can be
created.

Live Paint was not intended as a stand-alone system from
Adobe Systems, but was developed to research algorithms
and some heuristics for coloring regions. While not focused
on hand-drawn images, the presented algorithms are also
perfectly applicable in this area, because often digital 2D
sketches are also based on the planar map metaphor, and the
system offers a good gap detection, that often occur on this
kind of images.

Evaluation and Comparison
We presented six different approaches for digital 2D sketch-
ing. Most of them had a different focus. In this section we
want to evaluate the different systems.

The creation of the first system [9] focused mainly on the
interactions with the canvas which should map to the tradi-
tional sketchbook. Although they were successful in creat-
ing a non-distracting user interface it is doubtable that the

5



interface is intuitive. Especially the small circular menu,
where no description or tool-tip is available, does not com-
municate what settings are changed with the different bub-
bles, which was also a negative point in their evaluation.
Furthermore, the translation and rotation and particularly the
scaling of the canvas is not very intuitive as well. All in all
the user really needs to learn the system to be able to interact
with it and use all the possible features, thus, it is doubtable
if an artist would prefer such a system over pencil and paper.

The second system, ICanDraw? [5], which provides the user
with corrective feedback for their drawing and thereby tries
to teach the user in drawing faces, is a good example for
using a computer to help the user in sketching. This shows
some real advantages of a computer over traditional pencil
and paper sketching, because such a feedback could only be
given by real teacher. The interface seems to be intuitive
and only the gestures need to be learnt. The only shortage
of the system is the evaluation because the system was only
evaluated with five participants.

The third system [4] is an older system but it smoothed the
way for further systems with their Snap-Dragging technique.
Only precise lines can be created, thus, the main focus is
sketching diagrams with it. The interactions are outdated
nowadays but the snapping technique is used in many fol-
lowing approaches.

One of them is the fourth system [7] which uses constraints
for creating drawings. Constraints can be helpful in creating
sketches and drawings but they may also stop the rapid cre-
ation of sketches. However with constraints the user is able
to easily edit a sketch or a drawing. But usually such system
will only be used for sketching diagrams.

The fifth system [8] beautifies the drawn strokes very harsh.
Thus, the result of a sketch drawn with such a system does
not look like a sketch anymore. This might be problematic
as explained before. But on the other hand this allows the
user to create sketches or diagrams, which in this case only
consist of lines, very rapidly. Mainly there are only two in-
teractions: drawing and erasing with the scratch-out gesture.
Therefore, interacting with the system is very easy. How-
ever, for instance a missing undo function is a shortfall of the
system. They evaluated their system well since they used 18
participants and furthermore compared their system to other
system which were representatives of different types of sys-
tems.

In the system by [11] the strokes are beautified only a lit-
tle, but the system is very good at approximating the original
strokes. The interactions with the system seem to be intuitive
as well. The system was only evaluated with participants
from the computer science field. These are not representa-
tives of the main users, thus, the evaluation is questionable.
Nevertheless, this system is a good system for understanding
sketches and with some future work such systems may un-
derstand nearly the whole sketch and thus, they can support
the users very well in creating sketches and diagrams.

3D SKETCHING
While 2D sketching may be made easier with the help of
computer sketching systems, there exists a type of sketches
that would not be possible without one: three dimensional
sketches. With 2D sketches, the user works on a two dimen-
sional plane (which may be a digital one, or just a piece of
paper), and may compensate the lack of a third dimension
by using vanishing points, shades, and other tricks that lead
our brain to perceive a 3D object. But using this method, it is
only possible to show a very limited amount of surfaces of an
object. Concept arts of new cars usually show the front, the
top and one side of the car. But if the designer also wants
to show the rear, he has to start a new drawing next to the
first one. If he wants to sketch a full 3D model of it, it is
unavoidable to use a computer for this task.

The systems explained in this section come up with the logi-
cal next step to 2D sketching systems, namely 3D sketching.
The user does not only create a two dimensional view on
an object, but is able to create a three dimensional represen-
tation. Note that many techniques presented in the earlier
section, like interactive beautification [8], can also partly be
used for 3D sketching.

2D-to-3D Modeling
The first approach to present is not a complete 3D sketching
tool on its own, but a system with which a user can create
3D models out of 2D sketches with the help of annotations
placed on those [6]. When creating 3D models with software
tools, the user normally has to rotate the image very often,
for modeling every part of the object. The authors of the
2D-to-3D system want to avoid that by offering the user the
ability to import any kind of sketch created with a computer
or by hand with pen and paper, and create a 3D model out of
that.

The first step to create a 3D model after importing the 2D
sketch is to place primitives on the original image. Prim-
itives are basic shapes that are used to create the different
parts of the model, e.g. one for the head of a person, one
for the body, and several for arms and legs. The system
provides generalized cylinders and ellipsoids for this task.
To create a cylinder type primitive, the user draws a sim-
ple line in the image. This generalized cylinder will then be
placed around this line with a given width. In case of an
ellipsoid type primitive, the user simply draws an ellipsoid.
Both types of primitives are presented as 2D outlines in the
drawing view above the original image. Each primitive type
has different attributes specifying the behavior of it in 3D
space, which can be changed by the user at any time. The
generalized cylinder has the following handles for those at-
tributes: out-of-image-plane tilt handle, cross-section scale
handle, symmetry sheet handle, and end-cap handles.

The out-of-image-plane tilt handle allows to bend a primitive
out of the image plane. By default, a primitive is perpendicu-
lar to the image plane. The change of this attribute is shown
by using different colors for the areas dragged out of the
plane, and a 3D preview is always shown in a small window,
which can be fully rotated by dragging it. The cross-section

6



Figure 8. A generalized cylinder and an ellipsoid primitive with handles
added to them in [6].

scale handle can be used to change the size of the cylinder.
By clicking and dragging anywhere on the outline, the user
can enlarge or scale down the primitive on that point. The
symmetry sheet handle adjusts a plane inside the primitive,
which is used e.g. for mirroring along it with appropriate an-
notations as explained later. With the end-cap handles, the
user can adjust the protrusion of the caps at each end of the
cylinder. The ellipsoid primitive also uses the out-of-image-
plane handle, but does not provide any other attributes. In
Figure 8 the different available handles are added to the two
primitive types.

To complete a consistent 3D model, the user is able to create
annotations in the image. These are used to adjust symmetry
and consistency among the primitives. The connection curve
annotation allows the user to connect two primitives. A mir-
ror annotation can be used to create a copy of a primitive as
a reflection along a symmetry sheet of another primitive. For
example, this can be useful to create arms and legs of a char-
acter. With alignment annotations it is possible to align one
or more primitives with respect to a symmetry sheet of an-
other primitive. Same-tilt annotations are used to assign the
same out-of-image-plane tilt to several primitives. The last
annotation is the same-scale annotation, which marks two or
more primitives to have the same scale. The primitive han-
dlers and these annotations together are sufficient to create
3D models on top of existing 2D sketches.

A user study of the 2D-to-3D modeling system consisted
only of seven people. Three of those already had 2D mod-
eling experience, and five users had already worked with 3D
model manipulation systems. As a result of the study, the
authors describe that all users were able to create 3D models
after 15 minutes of training, but all familiar to 3D manipula-
tion software were very slow at the task and felt uncomfort-
able with the system. After time they got used to the new
concepts.

Beside of the fact that a user study consisting of seven par-
ticipants is not a meaningful one, the models created by the
system and shown in the paper all have some shortcomings.
Because a primitive has to be created for every part of the 3D
model, it takes a lot of time to model details of the drawing.
The presented models of people all just consist of the body,
an arm, and two legs. Some have additional primitives for
the feet and the hands, but details depicted in the original 2D
drawing, like a face or clothes were not modeled in 3D. If a
user wished to do that, he has to add and model many small
primitives. Furthermore, the presented 3D models all look

very round due to the fact, that the primitives are oval by de-
fault, and it is not really possible to make them rectangular.

ILoveSketch
ILoveSketch [2] is a 3D sketching system aimed at profes-
sional users, which tries to use the same affordances of cre-
ating 2D sketches using pen and paper, and to provide the
user an interaction that is like using a physical sketchbook.
The system supports 2D curve sketching, and offers a set of
3D curve creation tools. For both, 2D and 3D sketches, ges-
tures may be used to execute basic commands, all of which
can be performed using pen and digital graphic tablets.

At first we describe the 2D curve sketching techniques of
ILoveSketch. When sketching a simple line, a designer does
not usually draw a single line, but draws a very light curve
first, and repeats to draw that line with several more strokes.
ILoveSketch automatically shows an intermediate curve, that
is the average of the hand drawn curves. This automatically
created curve can be used by the designer to adjust the line he
wants to draw by correcting it with some more strokes. After
a time, all curves but the automatically created one vanish,
leaving just one final line. This vanishing is made visible
to the user by a change of the color of the curve. When the
user starts a curve tangential to the previous one, the system
connects them both to one single line. If that is not what the
user intended, he can undo this action by a counterclockwise
roll gesture with his pen on the screen. Normally when using
pen and paper, the designer often rotates the paper in order
to draw the curves more smoothly. ILoveSketch offers the
functionality of rotating the canvas by pressing a button on
the graphical tablet, and rotating the image with the active
(drawing) hand around a fixed anchor point in the upper left
of the screen. When dragging the canvas to or away from the
anchor point while holding the button, the user can zoom in
and out of the image. Using another button on the tablet, it is
possible to pan the virtual sketchbook. Going a step further,
the canvas will automatically rotate towards on optimal ori-
entation of the last drawn curve after there has been a short
pause after drawing it.

For providing navigation in the 3D space, an object-centric
paradigm was chosen. When pressing a button on the tablet,
the user can navigate through the 3D model by dragging any-
where on or near the object. There are several options to
create 3D curves in ILoveSketch. The first one is to draw
two symmetric lines on a given center plane from a single
point of view. After the first one is drawn, two lines point-
ing to the vanishing point appear. The spatial relation of the
two drawn curves together with the center plane define the
position of them in the 3D space. A second possibility is to
draw a curve from two different point of views. Some 3D
sketching methods are based on sketch surfaces instead of
the creation of two or more lines. A sketch surface is just a
2D plane in the 3D space on which the lines will be drawn.
In order to define one, the system offers a context-sensitive
axes widget. At first a lasso gesture is performed on a 3D
curve, and the curve as well as the point where the gesture
was performed get selected. A small axis widget is shown on
that position (a small coordinate system, with an x, y and z

7



Figure 9. Performing a span gesture for creating an orthographic
sketch surface in [2]. The small coordinate system around the red dot
is the axis widget.

axis). Two delete it and return to the single-view sketching,
the user has to perform a scratch-out gesture on the widget.
A span gesture on two of the axes creates a sketching sur-
face in the plane of these two axes as shown in Figure 9.
This is also possible on the plane at the origin, in order to
select the standard center plane. A flick gesture along one
axis extrudes the selected curve along it. The last method is
to perform a flick gesture crossing the origin of the axis wid-
get defines a direction for an oblique extruded surface. The
best view for drawing strokes on the sketch surface is the
one where the surface has the largest visible projection. The
systems provides feedback about the quality of the current
view by changing the opacity of the current sketching sur-
face. Similar to the auto-rotation after drawing a 2D stroke,
ILoveSketch also rotates the 3D view to the best visibility
of the sketch surface, after a new sketch surface has been
chosen by the user.

The management of the sketches created by the user is based
on a sketchbook metaphor as most parts of the system. In or-
der to save a sketch the user performs a flipping-over gesture
on the sketch, like one performs when flipping over a sheet
on a real sketchbook. To delete a sketch, a tearing gesture is
applied. The user can navigate through all of his sketches as
if he would be navigating through a paper sketchbook.

The user study of ILoveSketch consisted only of one par-
ticipant. Because the system is aimed at professionals, the
authors invited a professional designer with more then ten
years work experience. He created three 3D sketches in
about five hours, where two of them were just modeled from
existing designs, and the third was designed while working
with the system. Because of the use of many pen-and-paper
and sketchbook metaphors, the user was able to learn the
system quite fast (about one hour), and found the navigation
and creation of sketching surfaces quite easy after having
worked with 3D graphics before. The part of the system he
did not like at all was the automatic rotation of the model
after adding strokes to the sketch.

EverybodyLovesSketch
EverybodyLovesSketch [3] was developed as an improve-
ment over the previously presented ILoveSketch system. It
is also a gesture-based 3D sketching system, but this time
it aims not at professional users, but at beginners and ama-
teurs. Although the system is based on a pen-and-paper like
interface as its predecessor, it is build so that users without

any sketching experience should be able to draw sketches
with it. Therefore assisting lines are provided to guide the
user with drawing in 3D space.

For navigating through the 3D space, the same navigation
techniques as in ILoveSketch were implemented. The axis
widget is also used here to select a sketch surface. The
only difference is the change of the method to define the
extrusion direction for an extruded sketch surface. In Every-
bodyLovesSketch it is defined by applying an angled flick
gesture. The first part of the flick defines the angle between
the x-axis and the vector on the horizontal plane of the axis
widget. The second party defines the angle between this vec-
tor and the z-axis of the widget.

Another, simpler way to define sketch surfaces is the use of
ticks. Ticks are usually used by professionals when creating
perspective drawings to mark special points on the drawing,
like the start and end position of a stroke to draw, or the de-
sired intersection point of two lines. In EverybodyLovesS-
ketch a horizontal sketch plane (in relation to the standard
center plane) can be selected by simply applying one tick on
a 3D curve. The created sketch surface then passes through
the selected point. When creating two ticks on two differ-
ent points on 3D curves, a new vertical plane (angle of 90
degrees to the center plane) passing through both of those
ticks is created. By applying three ticks, an arbitrary sketch
surface passing through all three points is constructed. In
any created plane, the user can display a grid representing
the plane by double tapping in the plane. When drawing a
linear stroke on one of the grid line, a straight line along the
grid line will be added. When drawing an elliptic stroke, the
system will add a precise circle.

EverybodyLovesSketch introduces a method for selecting
multiple lines by applying a lasso gesture on all of them.
The user can then extrude the surface defined by the three
lines with a flick gesture, and use this extruded surface to
draw on. By applying a tick on one of the boundaries of
the sketch surface to copy and paste the selected lines to the
active sketch plane.

The system features a new crossing menu which is displayed
when a button on the tablet is pushed. Functionality for sav-
ing and opening sketches is available in the menu, as well
as a new symmetry function. When enabling symmetry, all
drawn strokes will be mirrored along one center plane, mak-
ing it easier to draw most parts of nearly symmetric objects,
e.g. cars or aircrafts.

The user study of EverybodyLovesSketch involved 49 high
school students attending a design class, and not specializ-
ing in art or design. 90% of the students with no experience
in 3D sketching were able to draw meaningful 3D sketches
within the first three using hours. In general the students
liked the usage of the system and said that after working a
while with it, it became quite natural to use it. A question-
able user study result is that most students answered they
were able to learn the system quite fast, while a polled de-
sign teacher said that it was not easy for his students to learn

8



the system.

Evaluation and Comparison
All three presented systems can be used to create three di-
mensional sketches and models, although the approaches are
different, especially between the first and the last two sys-
tems. In this section, we want to evaluate and compare the
systems.

The 2D-to-3D modeling system is not a real 3D sketching
tool. It is designed just to create 3D models on top of 2D
images, without any possibility to use sketching methods.
By having a look at a primitive on which different handles
were applied at several positions, it is hard to distinguish
the different kinds of handles, making it difficult to get an
idea of the 3D representation of that primitive. While the
idea behind the system was to create 3D models out of 2D
sketches, it is rather more the fact that the user creates a 3D
model with the 2D image just as an underlying view. The
2D image is not really used in the modeling process at all.

As ILoveSketch is aimed at professional users, it is diffi-
cult to learn how to sketch in the 3-dimensional space. It
is not very intuitive how to create sketch surfaces, and how
to draw on them. Because no user with professional back-
ground tested the system, it is difficult to make a statement
about the usability for non-professionals. When having no
experience with the creation of 2D or 3D sketches, it may
be hard to learn the different techniques necessary to use the
system.

The successor of the system, EverybodyLovesSketch, was
then aimed at non-professional users. By using ticks for the
creation of sketch surfaces in the 3D space, it is a bit more
easy to start 3D sketching. The introduction of the menu
helped to be able to turn symmetry on and off, instead of
defining that by different strokes. Still, it takes some time
to get used to the 3D space in which the user creates the
strokes, and it is difficult to distinguish the different surfaces
one is sketching on. But nevertheless, EverybodyLovesS-
ketch is a powerful and yet not too difficult system for cre-
ating 3D sketches, and remains the most intuitive system of
the three presented systems, thanks to easy 3D navigation
and the tick-based sketch plane definition.

GRAPH SKETCHING
Most sketch-based systems are aimed at sketching 2D or 3D
free-form models as shown earlier. But sketch interfaces can
also be used in other areas of application: some systems that
aim to support sketching of quantitative graphs (based on
scaled coordinate systems) and diagrams were introduced in
the last few years.

While it is often the case, that exact graphs based on quan-
titative raw data are desired, another kind of quantitative
graphs is also very important: conceptual quantitative graphs.
They do not depend on raw data, but represent simplified the-
ories about the discussed data. In reality they are more im-
portant than one might think, especially in economics, when
the actual situation should be visualized without real data, or

Figure 10. Snapping to the underlying grid when drawing a curve in
Graph Sketcher [12].

just the trend or progress of some data. In a book about Mi-
croeconomics analyzed by the authors of [12], about 20% of
the pages actually contained conceptual quantitative graphs.

There exist many systems for plotting raw data as graphs,
but they do not support creating graphs without such data.
A system that merges several methods and techniques men-
tioned earlier to support users with the illustration and sketch-
ing of graphs is Graph Sketcher [12]. It was presented in
2009 as shareware, and today is part of the OmniGraphS-
ketcher software from The Omni Group. Graph Sketcher
allows plotting graphs from data, sketching graphs by hand,
and direct manipulation of the created graphs. The system
uses already presented approaches, such as Snap-Dragging
and Live Paint.

A quantitative concept diagram (QCD) consists of a set of
lines, polygons, points and text labels in a two dimensional
space. A line itself consists of points, connected by a straight
or curved line, and polygons are filled areas bordered by
points. For the basic drawing functionalities, Graph Sketcher
uses several standard drawing tools, like a virtual pen, a
polygon tool and an editing tool for selecting and dragging
existing objects. A constraint-based layout system [7], as
presented earlier, is used in the drawing interface of Graph
Sketcher, to allow snapping to existing points, and to edit
connected parts of the diagrams simultaneously. The coor-
dinate system, in which the diagram will be drawn, is set up
by the user. He can change the size of the grid and the label-
ing of the axes. When drawing new elements, the cursor will
also snap to this grid as shown in Figure 10. Furthermore,
the position of points, lines, labels and so on are stored in
relation to the grid. When the user changes the coordinate
system, the whole drawing of the diagram or graph is ad-
justed to the new underlying grid.

Graph Sketcher also extends the idea of planar map illustra-
tion [1]. A coloring is not saved as a new layer, but is stored
with the boundaries of the lines that surround that area. This
does only effect whole colored areas of the graph, not just
filled polygons. Those are stacked like any other object in
the This approach makes it much easier to keep the correct
coloring after the user changes part of the diagram.

At the time of the publication of their paper, the software was
purchased over 1000 times by mainly students, teachers and
professional users. The authors have also performed a user
study about their system, asking 300 users who downloaded
to participate, and receiving responses from 31 of those. All

9



participants used the software for educational or professional
purpose, like economics, engineering or natural science. The
user created graphs and diagrams as well as a survey showed,
that snapping of points to the coordinate system is one of the
most important features of the program suitable for graph
drawing.

CONCLUSION
In this paper we presented different systems for supporting
digital sketching, including 2D, 3D and graph sketching.

2D sketching tries to catch the affordances of pencil and pa-
per sketching on the computer. However this may lead to
problems because often the interface is just gesture-based
and thus, the user does not know the possible interactions.
With real pencil and paper artists know how to erase with the
eraser and know that lines are stronger if they push harder
but these interactions are not yet possible with a computer.
Hence, they need to learn the interactions with the system
for instance to erase a line. This often may lead to the deci-
sion to use pencil and paper because it is available quicker
and artists do not need to learn how to interact with it.

The beautification which can be made with sketching soft-
ware can be positive and negative. On the one hand this may
lead to quicker sketching because it is easier to prototype for
instance diagrams with these beautifications. Furthermore,
even users who are not able to draw very well may start to
sketch with the help of beautifications. On the other hand
beautifications may lead to a result which does not even look
like a sketch anymore because it is too polished. Thus, others
may think that the quickly expressed idea is already finished.

In the future 2D sketching needs to find a way to catch the
affordances of pencil and paper sketching with a minimal-
istic interface but still making either the interactions so in-
tuitive that the user can easily work with the system or by
providing feedback to the user which interactions are possi-
ble. Furthermore, the border between a too polished looking
sketch and helping the user will still be a difficult problem.

In the area of 3D sketching systems, there exist few good and
usable systems, like the presented EverybodyLovesSketch.
The main challenge is to make it easy to draw lines in 3D
space, which is displayed on a 2D interface (the computer
screen). Because 3D sketching is not possible with pen and
paper, no affordances from real life can be used to support
the user. Therefore, drawing of 3D curves is the most diffi-
cult part in all presented systems. A possible solution would
be to use 3D environments, like a virtual reality workbench,
in order to get rid of having to select a sketching plane on
which to place the strokes. There is still a lot of research to
be done in this area of application.

For supporting users in sketching of graphs and diagrams,
the presented Graph Sketcher system is one of the few sys-
tems that were developed in this area of usage. It is very
well suited for that task and provides everything one needs
for creating quantitative concept diagram. The system was
quite successful when it was available as shareware and the

commercial OmniGraphSketcher software is build upon it.

REFERENCES
1. P. Asente, M. Schuster, and T. Pettit. Dynamic planar

map illustration. ACM Trans. Graph., 26(3):30, 2007.

2. S.-H. Bae, R. Balakrishnan, and K. Singh. Ilovesketch:
as-natural-as-possible sketching system for creating 3d
curve models. In UIST ’08: Proceedings of the 21st
annual ACM symposium on User interface software
and technology, pages 151–160, New York, NY, USA,
2008. ACM.

3. S.-H. Bae, R. Balakrishnan, and K. Singh.
Everybodylovessketch: 3d sketching for a broader
audience. In UIST ’09: Proceedings of the 22nd annual
ACM symposium on User interface software and
technology, pages 59–68, New York, NY, USA, 2009.
ACM.

4. E. A. Bier and M. C. Stone. Snap-dragging.
SIGGRAPH Comput. Graph., 20(4):233–240, 1986.

5. D. Dixon, M. Prasad, and T. Hammond. icandraw:
using sketch recognition and corrective feedback to
assist a user in drawing human faces. In CHI ’10:
Proceedings of the 28th international conference on
Human factors in computing systems, pages 897–906,
New York, NY, USA, 2010. ACM.

6. Y. Gingold, T. Igarashi, and D. Zorin. Structured
annotations for 2d-to-3d modeling. ACM Trans.
Graph., 28(5):1–9, 2009.

7. M. Gleicher and A. Witkin. Drawing with constraints.
The Visual Computer, 11:39–51, 1994.

8. T. Igarashi, S. Matsuoka, S. Kawachiya, and H. Tanaka.
Interactive beautification: a technique for rapid
geometric design. In Proceedings of the 10th annual
ACM symposium on User interface software and
technology, UIST ’97, pages 105–114, New York, NY,
USA, 1997. ACM.

9. M. Nijboer, M. Gerl, and T. Isenberg. Exploring Frame
Gestures for Fluid Freehand Sketching. 2010.

10. A. Panchal. sketchisland.com, 2010.

11. T. Sezgin, T. Stahovich, and R. Davis. Sketch based
interfaces: Early processing for sketch understanding.
In ACM SIGGRAPH 2006 Courses, page 22. ACM,
2006.

12. R. Stewart and m. schraefel. Graph sketcher: extending
illustration to quantitative graphs. In CHI ’09:
Proceedings of the 27th international conference on
Human factors in computing systems, pages
1113–1116, New York, NY, USA, 2009. ACM.

13. I. Sutherland. Sketch pad a man-machine graphical
communication system. In Proceedings of the SHARE
design automation workshop, pages 6–329. ACM,
1964.

10


	Introduction
	2D Sketching
	Exploring Frame Gestures For Fluid Freehand Sketching
	iCanDraw?
	Snap-Dragging
	Drawing With Constraints
	Interactive Beautification
	Sketch Based Interfaces
	Live Paint
	Evaluation and Comparison

	3D Sketching
	2D-to-3D Modeling
	ILoveSketch
	EverybodyLovesSketch
	Evaluation and Comparison

	Graph Sketching
	Conclusion
	REFERENCES 

